MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Model Answer: Winter-2018

Subject: Concrete Technology

Sub. Code: 22305

Important Instructions to examiners

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Oue. Total Sub. Model Answers Marks No. Oue. Marks 0.1 **Attempt any FIVE of the following:** 10 **(A)** a) List four physical properties of OPC. Ans. Physical properties of OPC: i. **Fineness** 1/2 ii. Standard consistency or Normal consistency 2 each Initial and Final setting time iii. (anv Soundness iv. four) Compressive Strength v. Define bulking of sand. b) Bulking of sand is defined as increase in volume of given sand due to Ans. surface moisture present on surface of particles. 2 2 State Duff Abraham's water cement ratio law. c) Duff Abraham's Law: For workable concrete, the compressive Ans. strength of concrete depends only on water-cement ratio. 2 2 Name four methods of concrete mix design. d) Arbitrary proportion method Ans. ii. Maximum density method iii. Fineness modulus method 1/2 ACI Committee 211 method iv. each Road note no. 4 method (Grading Curve Method) v. 2 (any Indian road congress method (IRC - 44) vi. four) vii. High strength concrete mix design method viii. Indian Standard method (IS 10262: 2009) Trial and error method ix. Surface area method x.

Model Answer: Winter-2018

Subject: Concrete Technology

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1		xi. Mix design based on flexural strength xii. 12.British DOE mix design method (Department of Environment) In sequence, write concreting operations.		
	e) Ans.	 i. Batching of materials ii. Mixing of materials iii. Transportation of concrete iv. Placing of concrete v. Compaction of concrete vi. Curing of concrete vii. Finishing of concrete 	2	2
	f) Ans.	State two purposes of using accelerating admixtures in the concrete. i. To accelerate the initial setting of concrete ii. Permit early removal of formwork in cold climate. iii. Reduce the required period of curing iv. Speed of the work can be boosted by early removal of formwork	1 each (any two)	2
	g) Ans.	 i. It is used for mass concrete works such as dams. ii. It is used for cracks resistant structures. iii. It is used for sulphate resistant structures. iv. It used in concreting of nuclear power plant, sea walts, break waters, etc. 	1 each (any two)	2
Q.2	a)	Attempt any <u>THREE</u> of the following: Explain the method to determine initial and final setting time of cement.		12
	Ans.	Procedure:		
		 i. Take 400 gm. of cement sample and add 0.85 times water required for its standard consistency to prepare homogenous cement paste. Note down the time at which water is added to cement as T₁ min. ii. Fill this cement paste in Vicat's mould. Keep this mould under Vicat's apparatus with IST needle attached to it. iii. Now allow the IST needle to penetrate in the paste by realize pin observe the total penetration. If the penetration is not 33 	4	4

Model Answer: Winter-2018

Subject: Concrete Technology

Que. No.	Sub. Que.		Me	odel Ans	wers				Marks	Total Marks
Q.2	Que.	to 3.	5 mm from top ace.	then cha	inge the	position	n of per	netration		IVILIES
			down the time etration as T_2 n				_	-		
		v. IST =	$= T_2 - T_1 \min.$							
		_	ace IST needle vetrate in same cer			and allov	w FST r	needle to		
			down the time ression on a cem-				ill give	the Just		
		viii. Calcı	ulate final setting	g time i.e	. FST =	T_3 - T_1 m	in.			
	b) Ans.	Classification As per size ag i. Coars 4.75 ii. Fine A	aggregate based of aggregate accepted aggregates are divided Aggregate: The aggregate as fine	cording to ided into The aggred as coar aggregate	o Size: two cate regate h rse aggre e whose	egories: aving si			2	4
		As per shape i. Round attrive ii. Irregunatu iii. Angul edge iv. Flaky	an of aggregate an aggregates are dided: This type tion or water wor lar or partly rally irregular or lar: This type of a formed at intermodular and elongated and elongat	of aggreen. rounde partly slaggregates section of the wide to wide	to four contact to four contact to four contact frought the or len	ategorie comple type of attrition ns well of y planer aggregat gth.	of aggran. defined faces. te havir	egate is	2	7
	c)	data and wri	e average crush te its suitability	•	e of agg	regate i				
		Sr. No.		ription		A	В	С		
		1	Weight of sample	oven	dried	3119	3246	3184		
		2	Weight of fra 2.36mmI.S. Si		assing	575	581	598		
	Ans.	To find aggre	gate crushing va	lue,						
		%ACV= Wei	ght of agg.passir Weight of ove				e <u>ve</u> X 10	00		

Model Answer: Winter-2018

Subject: Concrete Technology

0,,,,	Cv-la		 [To401
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	Quot	For observation I: %ACV= (575/3119)x100 = 18.43 % For observation II: %ACV= (581/3246)x100 = 17.89 %	3	
		For observation III: %ACV= (598/3184)x100 = 18.78% To find average crushing value of given aggregate Average %ACV = (18.43+17.89+18.78)/3		4
		Average %ACV = 18.36% Suitability: As the % ACV is 18.36%, which is less than 30%, hence the given sample of aggregate is suitable for non-wearing surfaces like roadways, runways etc.	1	
	d) Ans.	A sand sample has a fineness modulus of 1.95. Whether this sand can be used for concreting? Explain the procedure to bring the fineness modulus in required permissible limits. State its importance. The given sand sample has a fineness modulus 1.95, which is less than		
		prescribed limit i.e.2.2-3.2. It indicates that sand particles are finer, which is not suitable for satisfactory concreting work.	1	
		 i. The cumulative % retained of tested sand sample should be increased by adding sand particles which are having lesser % retained in the calculation. ii. When quantity of such sand particles are increased, then 	2	4
		FM of sand will be in the above mentioned range, which is also considered as well graded sand sample. Importance of FM:		
		i. Fineness modulus of sand should be 2.2 to 2.6 for fine sand, which is helpful for minimizing voids ratio and increasing density of concrete mass.	1	
		ii. Well graded sand is also useful for good bonding of particles and related strength criteria of concrete.		

Model Answer: Winter-2018

Sub. Code: 22305 Subject: Concrete Technology

Que.	Sub.		Model Ar	nswers		Marks	Total
No. Q.3	Que.	Attempt any TH	IREE of the followi	ng:			Marks 12
	a)		ompaction factor		g degree of		
	Ans.	Sr. No.	Degree of workability	Compaction factor		1	4
		i	Medium	0.92		each	
		ii	High	0.95			
		iii	Very low	0.78			
		iv	Low	0.85			
	Ans.	compressive street Effect of propertic concrete. i. Size of again of the strength of the stre	effect of propert ength of concrete. es of coarse aggregate: aggregate: aggregate particles mixture, then commay reduce due to are of smaller sizes of concrete will be 1 bination of both size where the concrete and aggregate:	are of large size (sometiments of large size) are of large size (sometiments of honey combing. only (say 10 mm). esser. Therefore contest (i.e. 10 and 20 mm).	ay 20 mm) in rsh and only But if coarse Then ultimate arse aggregate mm) will give	1 each (any four)	4
		_	of concrete aggregates	ata is angular than	there is good		
		interlocki compress angular o	ng of aggregate prive strength. If she is the sub-rounded then and ing between particular to the sub-rounded them are the sub-rounded them.	particles. Hence it ape of coarse agg compressive strengt	gives more regate is sub		
		iii. Surface t	exture:				
		interlocke	ture of coarse aggreed strongly than of same cement slur	smooth textured a			

Model Answer: Winter-2018

Subject: Concrete Technology

Que. No.	Sub. Que.		Model	Answers	Marks	Total Marks
Q.3		iv. W	Vater absorption:			
		pı re	rescribed limit, then deduction of strength. But	n of coarse aggregate is more than concrete becomes harsh result in if water absorption is less concrete giving required strength.		
			ther than above mention e considered).	ed properties of coarse aggregate		
	c)	_	the procedure for mea using slump cone test.	asurement of workability of fresh		
	Ans.	ii. Plant start st	lean the mould from insidence the mould on smooth arface or the centre of medial the mould with the comping each layer 25 times at the strokes are evenly emove the mould by one the concrete subsides and leasure the slump in motione.	th horizontal, rigid & non-absorbent etallic tray. concrete to be tested in four layers, les with the tamping rod, taking care	4	4
		Sr. No.	Slump (mm) 0-25	Degree of workability Very low	*	7
		2	25-50	Low		
		3 4	50-100 100-175	Medium High		
	d) Ans.	four)	of supervision for conce Supervision is necestory operations in standard. It is necessary to avoid It is also beneficial to concreting. It is required to get over Supervision becomes of concreting operation.	ssary to complete all concreting	1 each (any four)	4

Model Answer: Winter-2018

Subject: Concrete Technology

	G 1			TC 4 1
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4		Attempt any <u>THREE</u> of the following:		12
	a)	Explain the importance of water/cement ratio in the concrete mix. Importance of water/cement ratio in the concrete mix:		
	Ans.	 i. The W/C ratio plays very vital role in concrete mixture. The improper or random selection of W/C ratio leads in various defects in fresh and hardened concrete. ii. If W/C ratio is less (say w/c= 1/4 = 0.25), then concrete will become harsh and results in honeycombing or porous nature due to poor workability. iii. If w/c ratio is more (say w/c = 3/4 = 0.75), then concrete undergoes segregation and bleeding. Thus finally concrete shows defects in it. iv. Therefore w/c ratio should be optimum, which depends on grade of concrete and exposure conditions hence w/c ratio should be selected from IS: 456:2000. v. If w/c ratio is opted out properly as mentioned above, then concrete possess good workability, compressive strength and durability ultimately. 	1 each (any four)	4
	b)	Write four objectives of concrete mix design.		
	Ans.	i. To achieve a specified compressive strength of concrete.ii. To reduce wastage of concrete by correct proportioning.		
		iii. To achieve economy by selecting appropriate concrete ingredients.iv. To maintain workability of concrete mix throughout work.	1 each	4
		v. To obtain maximum possible yield per bag of cement.	(any four)	
		vi. To ensure less defects and enhanced durability of concrete.		
	c)	Describe four characteristics of ready mix concrete.		
	Ans.	Characteristics of ready mix concrete:		
		i. RMC can be ordered in bulk amount at a time.		
		ii. It has more homogeneity as compared to other concrete.iii. It becomes economical in large project.	1 each (any four)	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Model Answer: Winter-2018

Sub. Code: 22305 **Subject: Concrete Technology** Oue. Sub. Total. Model Answers Marks No. Que. Marks 0.4 iv. It can be easily transported at a longer distance without setting of concrete. v. Quality of concrete is uniform and high. vi. Useful in urban areas where it is lack of space. vii. No dust and noise pollution. d) Explain four effects of hot weather on concrete. Effects of hot weather on concrete: Ans. i. Due to hot weather, concrete shows rapid rate of hardening, which results difficulty in transportation of concrete. ii. Water from concrete mix gets evaporated fastly, which results on w/c ratio and less workability of concrete. iii. Water may get absorbed by formwork, aggregate or ground 1 due to excessive heat. each iv. More shrinkage cracks get developed on concrete surface due (any to incomplete hydration with less water in concrete. Hence, four) early finishing becomes more essential. v. Continuous curing is required to keep humidity and to avoid further development of cracks. vi. Air entrained in concrete may get expelled due to temperature, hence workability may reduce additionally. Write two advantages and two disadvantages of vacuum dee) watered concrete floor. Advantages of vacuum de-watered concrete floor: Ans. i. It reduces the time for finishing the floor. ii. Smooth and clean finish surface. 1 each It reduce permeability and increase durability of concrete floor iii. (any Increase the strength of concrete. Compressive strength is two) iv. increased by 10 to 50%. Decrease the total shrinkage. v. Disadvantages of vacuum de-watered concrete floor: High initial cost. 1 each ii. It required specific equipment. (any two)

Model Answer: Winter-2018

Subject: Concrete Technology

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	1.10del 1 ms Wels	1,141110	Marks
Q.4		iii. The porosity which there in the concrete allows water, oil and grease to seep into thereby weakening the structure.iv. Joint can also weaken the concrete.v. Abrasion can cause dust and cleanliness problem.		
Q.5		Attempt any <u>TWO</u> of the following:		12
	a)	Explain the laboratory procedure to determine the compressive strength of concrete cubes as per IS-516-1959 with reference to following points:		
		i. Preparation of test specimen		
		ii. Procedure of testing		
		iii. Interpretation of results		
	Ans.	Preparation of test specimen:		
		i. Take three cubes of 15 cm sides and apply oil to its inner	2	
		surface. ii. Prepare the concrete mixture of required grade and fill it in each mould in 3 layers. Compact each layer 25 times with 16 mm dia. steel rod. iii. Keep all the moulds at room temperature for 24 hrs for initial hardening and at relative humidity 90%. iv. Remove cube moulds and keep concrete cubes under fresh water for curing for 7, 14, 21, 28 days. Procedure of testing:		
		 i. Remove cube from water after curing period and keep it under compression testing machine (CTM) for testing. ii. Apply load at a rate of 35 N/mm2/min for 10 minutes or till failure load in N by cross sectional area of cube in mm2. iii. Finally calculate compressive strength of cubes as failure load in N by cross sectional area of cube in mm2. iv. The average of three test cubes can be calculated as average compressive strength in MPa 	2	6
		Interpretation of results:		
		i. If the calculated compressive strength is less than the grade of concrete used, then concrete can be rejected at site.	2	
		ii. When such strength is found more (say 23N/mm²) than the specified grade M20, then that concrete is safe and good for construction.		

Model Answer: Winter-2018

Subject: Concrete Technology

Oue	Sub.	Model Answers	Marks	Total
Que. No.	Que.	WIOGCI AllSWCIS	IVIAINS	Marks
Q.5	b)	Explain the rebound hammer test procedure and show the relationship between compressive strength and rebound number with hammer horizontal and vertical on dry and wet surface of concrete.		Warks
	Ans.	 i. Initially the plunger of rebound hammer is Kept touching to the target concrete surface ii. Then the tubular casing of hammer is pushed towards concrete, so that the spring gets wind up around the plunger iii. Now release the mass attached to plunger using dash pot, so that hammer will impact on concrete surface and rebound back depending on strength of concrete. iv. Due to backward motion of hammer, pointer on graduated scale will move in same direction. 	4	
		v. Observe the distance travelled by pointer/rider on graduated scale as rebound Number. vi. If this rebound Number is less, the strength of concrete will be less, But if it is more, then concrete possess sufficient strength. Hammer horizontal down wet by 15 and 16	2	6

Model Answer: Winter-2018

Subject: Concrete Technology

Que.	Sub.	Model Answers	Marks	Total
No. Q.5	Que.	Explain the ultrasonic pulse velocity test and techniques of		Marks
Q.5	C)	measuring pulse velocity through concrete.		
	Ans.	Procedure:		
		 i. Ultrasonic pulse velocity method consists of measuring the time travel of an ultrasonic pulse passing through the concrete to be tested. ii. The pulse generated circuit consists of electronic circuit for generating pulses and a transducer for transforming these electronic pulses into mechanical energy having vibration frequency in the range of 15 to 50 kHz. iii. The time travel between the initial path and the reception of the pulse is measured electronically. iv. The path length between transducer divided by the time of travel gives the average velocity of the wave propagation. PUNDIT (Portable Ultrasonic Non Destructive Digital Indicating Tester) is a battery operated fully digitized instrument which is generally used for measuring ultrasonic pulse velocity. 	3	
		Techniques of measuring Pulse velocity through concrete:		6
		a) Direct transmission: The transmitting and receiving transducers are placed on opposite surfaces of the concrete slab. This will give maximum sensitivity and provide a well-defined path length	1	
		(a) Direct or cross transmission b) Indirect transmission: The transmitting and receiving transducers are placed on adjacent surfaces of the concrete	1	
		slab. R R (b) Semi-direct transmission		

Model Answer: Winter-2018

Subject: Concrete Technology

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5		c) Surface transmission: The transmitting and receiving transducers are placed on same surfaces of the concrete slab (c) Indirect or surface transmission		
Q.6		Attempt any <u>TWO</u> of the following:		12
	a) Ans.	Write four requirements of good formwork and draw a sketch showing cross section of formwork for a L-shaped column. i. It should be strong enough to resist the weight of concrete, workers and machinery. ii. It should be economical compared to total cost of construction. iii. It should be possible to use the formwork for more number of times. iv. It should give smooth finish and shape to concrete faces. v. It should be possible to erect and dismantle the formwork very easily. vi. It should be easily and locally available. vii. It should be rigid enough to retain its shape without deflection or bulging.	each (any four)	6
		Yoke Wedge Bolt Fig. Cross-Section of L-Shape Column	2	

Model Answer: Winter-2018

Subject: Concrete Technology

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		Iviaiks	Marks
Q.6	b)	Suggest one type of materials for water proofing for the following		
		situations.		
		i. Rising dampness in building		
		ii. Leakages in dam		
		iii. Concrete continuously in wet or damp condition		
		iv. Leakages in lavatory ,bathroom and kitchen floor		
		v. Cracks on plastered surface		
		vi. Cracks on roof surface		
	Ans.	i. Flexible materials like butyl rubber, hot bitumen (asphalt),		
		plastic sheets, bituminous felts, sheets of lead.	4	
		ii. Liquid applied cementitious membranes	1,	6
		iii. Liquid applied cementitious membranes	each	
		iv. Liquid applied cementitious membranes, liquid applied latex		
		membranes, brick bat coba, liquid applied bituminous membrane.		
		v. Liquid applied cementitious membranes. vi. Brick bat coba, liquid applied bituminous membrane.		
		vi. Brick bat coba, fiquid applied bituminous membrane.		
	c)	Suggest the type of joints in concrete when it is likely to increase in		
		volume due to temperature change. Explain it and draw its neat		
		sketch.		
	Ans.	When it is likely to increase in volume due to temperature change		
		expansion joint is constructed.	1	
		i. Expansion joints are provided by keeping a gap between panels		
		of concrete and later sealing it		
		ii. The joint which is provided to present the expansion in		
		concrete caused due to thermal stresses.		
		iii. These stresses produce due to extreme temperature conditions.		6
		The typical expansion joint is provided with dowel bars at a	3	
		depth equal to half of slab thickness.		
		iv. This dowel of 20 mm diameter and 550 mm long is covered		
		with metal cap filled with cotton and finally such joint is sealed		
		using sealants like wood, thermocol or bitumen.		
		H		
		100mm - 20mm		
		Compressible filler-board 20mm thick Dowel bars 20mm dia. x 550mm		
		long at 300mm centres (half of		
		each bar to be debonded) Expansion Joint with Load-Transfer Device		
		Expansion joint filler — 12mm to 25 mm		
			2	
		Expansion Joint Without Load-Transfer Device Fig. Expansion Joint		
		rig. Expansion Joint		