WINTER – 19EXAMINATION

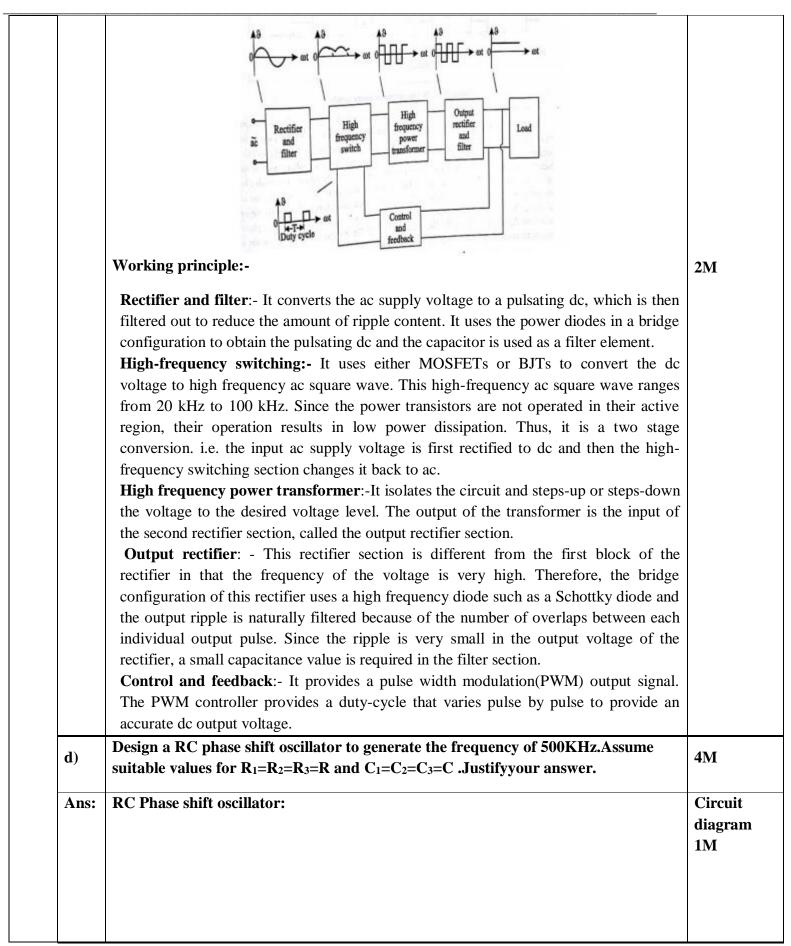
Subject Name: Applied Electronics Model Answer Subject Code:

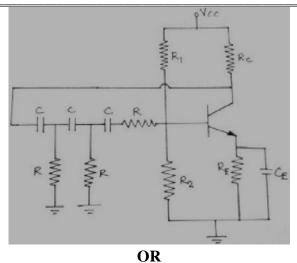
22329

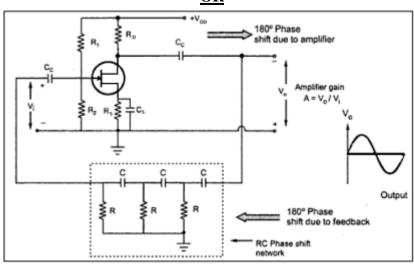
Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.						Marking Scheme
Q.1		Attempt any FIVE of the following:					10-Total Marks
	a)	List the ty	pes of c	coupling used in	BJT amplifier.		2M
	Ans:	i. Re ii. Im iii. Tra iv. Dir	sistance pedance ansforme rect coup			ny four)	Each ½ M
		•					
	Ans:		Sr.No	Parameters	Small signal Amplifiers	Power Amplifiers	Any four points:
			1	Amplification quantity	It increases voltage into high resistance load. Hence small signal amplifiers are also called as voltage amplifiers.	It increases power into low resistance load. Hence these amplifiers are also called as large signal amplifiers.	each ½ M
			2	Current Gain(β)	High(typically 100)	Low(5 to 20)	
			3	Input Resistance(R _i)	Quite low	Very large	
			4	Output	High	low	


BOARD OF TECHNICAL EDUCATION


			Impedance(R _o)					
		5	Physical size	Small	Large in size			
		6	Coupling	R-C coupling	Transformer			
					coupling			
		7	Power output	low	High			
c)	State for	ır advan	tages of negative	feedback used in feedba	ck amplifier.	2M		
Ans:	Advanta	ges of no	egative feedback:	(Any Four)		Each ½		
	i. I	istortion	decreases					
	ii. N	loise in o	utput decreases					
	iii. S	tability o	f gain of amplifier	improves				
	iv. I	is used a	as an amplifier.					
	v. (perating	point is stabilized					
	vi. I	nput resis	stance increases in	certain configuration and	l output resistance decre	eases in		
	C	ertain coi	nfigurations.					
	vii. E	andwidtl	n is increased					
d)	State Ba	rkhause	n criteria of oscill	ation.		2M		
Ans:	Where,	$A_{\rm V} = {\rm gain}$	of an amplifier w	ithout feedback also calle	d open loop gain	1M		
	$\beta A_V = p$	β A _V = product of feedback fraction and open loop gain. It is called loop gain.						
	The Barkhausen criterion for the generation of sustained oscillations. for positive feedback							
	The Bar	khausen	criterion for the ge	eneration of sustained osc	= =	edback		
	The Barare:	khausen	criterion for the ge	eneration of sustained osc	= =	edback		
	are:	khausen A = 1	criterion for the ge	eneration of sustained osc	= =	edback 1M		
	are:	A = 1	criterion for the ge		= =			
e)	are: 1. £ 2. 7	A = 1 otal phas	se shift should be 3		cillations. for positive fe			
e) Ans:	are: 1. β 2. T	A = 1 Total phas	se shift should be 3	.60° or 0°	cillations. for positive fe	1M		
	are: 1. fi 2. T	A = 1 Cotal phas tiate pos	se shift should be 3	60° or 0° d negative feedback (fou	rillations. for positive feature for points)	1M 2M		
	are: 1. ft 2. T Different	A = 1 Total phas tiate pos Param	se shift should be 3 itive feedback an neter	60° or 0° d negative feedback (fou	rillations. for positive feature featu	1M 2M Any Fou		
	are: 1. f: 2. 7 Differen	A = 1 Total phas tiate pos Param	se shift should be 3	d negative feedback (for Positive feedback In phase with the input	r points) Negative feedback 180 ° out of phase	1M 2M Any Four		
	are: 1. ft 2. T Different	A = 1 Total phas tiate pos Param	se shift should be 3 itive feedback an neter	60° or 0° d negative feedback (fou	rillations. for positive feature featu	1M 2M Any Four		
	are: 1. ft 2. T Different	A = 1 Sotal phas tiate pos Param Feedb	se shift should be 3 itive feedback an neter	d negative feedback (for Positive feedback In phase with the input	r points) Negative feedback 180 ° out of phase	1M 2M Any Four		
	are:	A = 1 Sotal phas tiate pos Param Feedb	se shift should be 3 itive feedback an neter ack signal	d negative feedback (for Positive feedback In phase with the input signal.	r points) Negative feedback 180 ° out of phase with the input signal.	1M 2M Any Four		
	are:	A = 1 Sotal phas tiate pos Param Feedb Net in Gain	se shift should be 3 itive feedback an neter ack signal	d negative feedback (for Positive feedback In phase with the input signal. Increases	r points) Negative feedback 180 ° out of phase with the input signal. Decreases	1M 2M Any Four		
	are: 1. f. 2. T Different Sr. No. 1 2 3	A = 1 Sotal phas tiate pos Param Feedb Net in Gain	se shift should be 3 sitive feedback an neter sack signal uput signal Increases	d negative feedback (for Positive feedback In phase with the input signal. Increases Increases	Property of the control of the contr	1M 2M Any Four		
	are: 1. f. 2. 7 Different Sr. No. 1 2 3 4	A = 1 Total phas tiate pos Param Feedb Net in Gain Noise Stabil	se shift should be 3 sitive feedback an neter sack signal uput signal Increases	d negative feedback (for Positive feedback In phase with the input signal. Increases Increases Increases	r points) Negative feedback 180 ° out of phase with the input signal. Decreases Decreases Decreases	1M 2M Any Four		
	are: 1. f. 2. T Different Sr. No. 1 2 3 4 5	A = 1 Sotal phas tiate pos Param Feedb Net in Gain Noise Stabil Input	se shift should be 3 itive feedback an neter eack signal uput signal Increases ity	d negative feedback (for Positive feedback In phase with the input signal. Increases Increases Increases Poor	r points) Negative feedback 180 ° out of phase with the input signal. Decreases Decreases Decreases Improved	1M 2M Any Four		
	are: 1. f. 2. T Different Sr. No. 1 2 3 4 5 6	A = 1 Sotal phas tiate pos Param Feedb Net in Gain Noise Stabil Input	se shift should be 3 itive feedback an neter ack signal aput signal Increases ity impedance	d negative feedback (for Positive feedback In phase with the input signal. Increases Increases Increases Poor decreases	r points) Negative feedback 180 ° out of phase with the input signal. Decreases Decreases Improved increases	1M 2M Any Four		


State the need of tuned amplifier in electronic circuits.(four points)	2M
(Note:Any two points can be given full marks) Need of tuned amplifier: i. Selects the desired radio frequency signal. ii. Amplifies the selected high or radiosignal to a suitable voltage level. iii. As a filter.	2M
List the uses of heat sink (four points)	
surroundings.	Each point ½ M
	(Note:Any two points can be given full marks) Need of tuned amplifier: i. Selects the desired radio frequency signal. ii. Amplifies the selected high or radiosignal to a suitable voltage level. iii. As a filter. List the uses of heat sink (four points) Uses of heat sink: i. It is used to avoid thermal runaway in electronic circuits. ii. Use to transfer heat generated by a mechanical or an electronic device to the surroundings.

2.2		Attempt any THREE of the following:	12-Total Marks
	a)	Explain the working principle of FET amplifier and list its two applications.	
	Ans:	Circuit diagram:	Circuit
		V _{EO}	diagram:
		\geqslant R ₁ R _D \geqslant I _D	1 ½M
		C_1 C_1 C_2 C_3 C_4 C_5 C_5 C_5 C_7 C_8 C_8 C_8 C_9	
		Explanation:	4.1/3.5
		i. When small a.c. signal is applied to the gate, it produces variation in the gate to source voltage. This produces variation in the drain current. As the gate to source voltage increases, the drain current also increases. As the result of this voltage drop across R_D also increases. This causes the drain voltage to	1 ½M
		decreases.	
		ii. As the input voltage rises, gate to source voltage becomes less negative, it will increase the channel width and increase the level of drain current I _D .	
		iii. As the input voltage falls, it will decrease the channel width and decrease the level of drain current I_D . Thus I_D varies sinusoidally above its Q point value.	
		iv. The drain to source voltage V_{DS} is given by $V_{DS} = V_{DD} - I_D R_D$	
		v. Therefore as I _D increases the voltage drop I _D R _D will also increase and voltage V _{DS} will decrease.	
		vi. If ΔI_D is large for a small value of ΔV_{GS} ; the ΔV_{DS} will also be large and we get amplification. Thus the AC output voltage V_{DS} is 180° out of phase with AC	

i ii iv v vi vi Co fee	i. Lovii. Bu ii. Cas v. An v. Mu vi. Che iii. Cu ompare to edback a	_	olifier er fier	s type of negative current series type negative feedback	1M (1/2 M each) 4M
i iii iv v vi vi b) Co fee	i. Lorii. Bu ii. Cas v. An v. Mu vi. Ch iii. Cu ompare te edback a	w noise amp ffer amplifies scade amplifies alog switch altiplexer opper rrent limiter the perform amplifiers.(f	er fier nance of voltage series and current series four points) voltage series negative feedback	current series type	(1/2 M each)
i	ii. Bu ii. Cas v. An v. Mu vi. Ch ii. Cu ompare te edback a	ffer amplifies scade amplifies alog switch altiplexer opper rrent limiter the performamplifiers.(f	fier nance of voltage series and current series four points) voltage series negative feedback	current series type	each)
b) Co fee	ii. Cas v. An v. Mu vi. Ch ii. Cu ompare t edback a	scade amplifalog switch altiplexer opper rrent limiter the performamplifiers.(f	nance of voltage series and current series four points) voltage series negative feedback	current series type	4M
b) Co fee	v. An v. Mu vi. Ch ii. Cu ompare t edback a	alog switch altiplexer opper rrent limiter the perform amplifiers.(f	nance of voltage series and current series four points) voltage series negative feedback	current series type	
v vi b) Co fee Ans: Si	v. Mu vi. Che ii. Cu ompare te edback a	altiplexer opper rrent limiter the perform amplifiers.(f	nance of voltage series and current series four points) voltage series negative feedback	current series type	
b) Co fee Ans: Si	vi. Choii. Curompare tedback a	opper rrent limiter the perform amplifiers.(f	nance of voltage series and current series four points) voltage series negative feedback	current series type	
b) Co fee	ompare tedback a	rrent limiter the perform amplifiers.(f	nance of voltage series and current series four points) voltage series negative feedback	current series type	
Ans: Si	Sr.No P	amplifiers.(f	four points) voltage series negative feedback	current series type	
	В				o A ny four
	В				5
1		Plools	•		point
1		Plools	1	amplifiers	Each poir
	d	HOCK			-1M
		iagram	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Vin Op-amp IL Feedback Circuit	₹RL
2	G G	Sain	$V_f = \beta V_o$ $Decreases$	Decreases	
3)t-nt	Decrease	Increase	<u> </u>
		Output esistance	$Z_{if} = \frac{ZI}{1+\beta A}$	$Z_{if}=Z_i(1+\beta A)$	
4	. Iı	nput	Increases	Increase	
	r	esistance	$Z_{if}=Z_i(1+\beta A)$	$Z_{if}=Z_i(1+\beta A)$	
5	D	Disortion	Decrease	Decrease	
c) Dr	raw the l	block diagra	am of SMPS and state its working princ	iple.	4M
A D:					21/4
Ans: Dia	iagram:				2M

Calculation 2M

Assume the values of R and C:

(NOTE:STUDENT CAN ASSUME ANY VALUES OF R AND CALCULATE "C"ORASSUME ANY VALUES "C" AND CALCULATE "R")

Assume

 $R1=R2=R3=R=10K\Omega$

Given:

$$f = 500 \text{ KHz}$$

Assume $R = 10 \text{ K.D.}$
 $C = ?$

Solution:

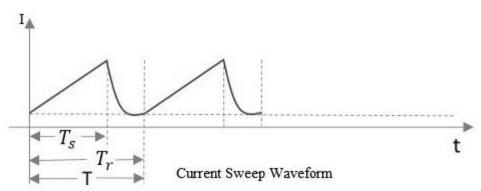
Formula of frequency of RC phase shift oscillator is

 $f = \frac{1}{2\pi \text{ RCVG}}$
 $500 \text{ K} = \frac{1}{2\pi \text{ RCVG}}$
 $C = \frac{1}{2\pi \times 10 \times 10^3 \text{ CVG}}$
 $C = \frac{1}{7.695 \times 10^{10}}$
 $C = 12.99 \text{ pF}$

Similarly students can calculate R assuming \boldsymbol{C}

This oscillator is used to generate low frequency signal.

Justificatio n 1M


3		Attempt any THREE of the following:	12-Total Marks
8	a)	Classify the power amplifiers on the basis of operation and input/output waveforms.	4M
I	Ans:	Depending upon the operation and input/output waveforms power amplifiers are classified into following type. 1) Class A amplifier. 2) Class B amplifier. 3) Class C amplifier. 4) Class AB amplifier. 5) Class D amplifier.	Any 4 type 1M each
ŀ	b)	Describe the operation of class-C type of power amplifier with the help of neat sketch.	4M
	Ans:	 Operation: Class C power amplifier is a type of amplifier where the transistor conducts for less than one half cycle of the input signal. Less than one half cycles means the conduction angle is less than 180° and its typical value is 80° to 120°. Biasing resistor R_b pulls the base of Q₁ further downwards and the Q-point will be set below the cut-off point in the DC load line. As a result the transistor will start conducting only after the input signal amplitude has risen above the base emitter voltage (Vbe~0.7V) plus the downward bias voltage caused by R_b. That is the reason why the major portion of the input signal is absent in the output signal. Inductor L₁ and capacitor C₁ forms a tank circuit which is used in the extraction of the required signal from the pulsed output of the transistor. Values of L1 and C₁ are so selected that the resonant circuit oscillates in the frequency of the input signal. Since the resonant circuit oscillates in one frequency (generally the carrier frequency) all other frequencies are attenuated. 	2M
(c)	Justify the need of current time base generator to obtain the specified sawtooth waveform with one example.	4M
A	Ans:	 Justification:- Current Time base generator is a circuit where the output current is a linear function of time over a specified time interval. Time base circuits are used by radar systems to determine range to a target, by comparing the current location along the time base to the time of arrival of radio 	Justification 2M, Waveform

echoes.

• Current Time base generators produce very high frequency sawtooth waves specifically designed to deflect the beam in cathode ray tube (CRT) smoothly across the face of the tube and then return it to its starting position.

• To display the variations of a signal with respect to time on an oscilloscope, a voltage/current that varies linearly with time, has to be applied to the deflection plates. This makes the signal to sweep the beam horizontally

Waveform:

Example:

- A cathode ray tube (CRT) consists of three primary parts, the electron gun that
 provides a stream of accelerated electrons, the phosphor-covered screen that lights
 up when the electrons hit it, and the deflection plates that use magnetic or electric
 fields to deflect the electrons in-flight and allows them to be directed around the
 screen.
- It is the ability for the electron stream to be rapidly moved using the deflection plates that allow the CRT to be used to display very rapid signals.
- To display such a signal on an oscilloscope for examination, it is desirable to have the electron beam sweep across the screen so that the electron beam cycles at the same frequency as the carrier, or some multiple of that base frequency.
- This is the purpose of the current time base generator, which is attached to one of the set of deflection plates, normally the X axis, while the amplified output of the radio signal is sent to the other axis, normally Y. The result is a visual re-creation of the original waveform.

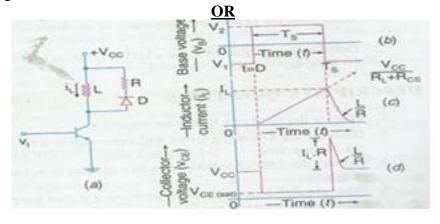


Fig: A current time base circuit.

Example 1M

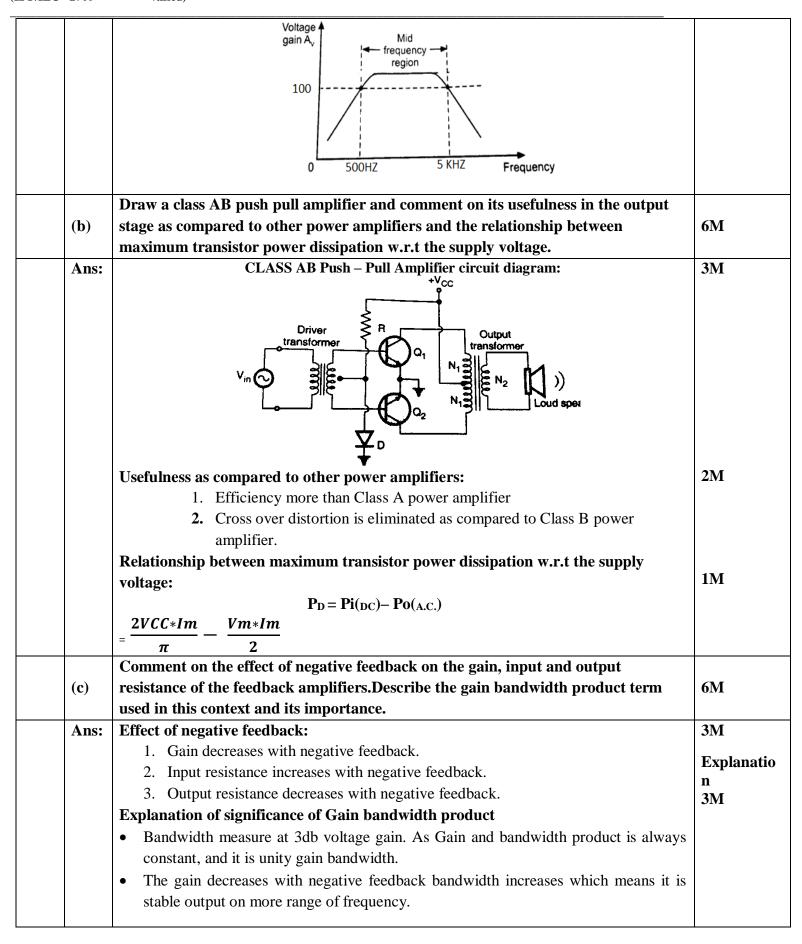
//IEC -	2700	tuneu)	
		 Above Fig. shows a simple circuit of a current time base generator. Here an inductor (L) in series with a transistor is connected across the V_{CC} supply. The transistor operates as a switch in the circuit. The gating waveform at the base operates between two levels. V₁and V₂ as shown. The lower level (V₁) keeps the transistor in cut-off, while the upper level drives the transistor into saturation. When the transistor switch is turned ON, then neglecting the effect of small saturation resistance (R_{cs}), the current through and inductor (i_L) increases linearly with the time. The diode D does not conduct during the sweep, because it is reverse biased. Design a voltage regulator using IC LM317, draw the circuit diagram and state the 	
	d)	output voltage equation.	4M
	Ans:	Circuit diagram:- 3 C1 LM317 R2 240 ohm Vin C1 O.1uF R1 5K C2 Vout	2M
		 IC LM317 is adjustable three terminal positive voltage regulator, available with output voltage of 1.2v to 37v and output current from 0.1A to 18.12 A. Three terminals of adjustable voltage regulators are V_{in}, V_{out}, and adjustment, above fig shows connection diagram of LM 317 regulator. It requires only two external resistors to set the output voltage. LM 317 develops a nominal 1.25v referred to as the reference voltage. V_{ref} between output and adjustment terminals. This voltage is impressed across R₂, since the voltage is constant; the current I₂ is also constant for given value of R₂. In addition to I₂, current I_{Adj} from the adjustment terminal also flows through the output resistor R₁. LM317 is designed such as I_{ADJ}-100μA- The output voltage Vo is V₀=R₂.I₂ +R₁(I_{ADJ} + I₂)(1) I2 = Vref/R₂ Substitute I2 in equation (1) V₀=R₂. Vref/R₂ +R₁(I_{ADJ} + Vref/R₂) V₀=R₂. Vref/R₂ +R₁,I_{ADJ} +R₁. Vref/R₂ V₀=V_{ref}(1+R₁/R₂)+R₁,I_{ADJ} +R₁,I_{ADJ} Where V_{ref}=1.25v. 	Design-1M

		However the current IADJ is very small and constant. Therefore the voltage drop across			
		R2 due to IADJ is also very small and can be neglected.			
		Therefore			
		$V_0=1.25.(1+\frac{R1}{R2})$	Output		
		The output is a function of R_1 for a given value of R_2 and can be varied by adjusting the value of R_1 . The resistor R_2 usually is 240 ohm. Normally no capacitor is needed unless the LM317 is situated far from the power supply filter capacitor.	equation- 1M		
.4		Attempt any THREE of the following:	12-Total Marks		
	a)	Draw the two stage BJT amplifier. State the formula for overall gain of this amplifier.	4M		
	Ans:	Diagram:	3M		
		Vcc			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		Let Av_1 -Voltage gain of first amplifier Av_2 -voltage gain of second amplifier Av_2 -voltage gain, $Av = Av_1 * Av_2$	Formula 1M		
	b)	Draw the circuit diagram of class AB power amplifier and describe its working.	4M		
	Ans:	Circuit diagram:			
		01 T ₂ N ₁ 000000000000000000000000000000000000	2M		
		92			
		Circuit Description:			
		-	1		
		The circuit consists of two center-tapped transformers T_1 and T_2 , two identical transistors Q_1 and Q_2 , Resistor R and diode D. The DC voltage developed across the			

rtified) of the input transformer. This voltage acts as DC bias for the transistors because it is equal to cut-in voltage and they will conduct for complete half cycleperiod of the input to eliminate the cross-over distortion. **WORKING**: When there is no a.c. input signal is applied both the transistors Q_1 & Q_2 are cut off. Hence no current is drawn from VCC. **DURING POSITIVE HALF CYCLE:** ii. 2M• The base of the transistor Q_1 is positive and that of Q_2 is negative. As a result of this Q_1 conducts, while the transistor Q_2 is OFF. \neg DURING iii. **DURING NEGATIVE HALF CYCLE:** • The base of the transistor Q_2 is positive and that of Q_1 is negative. • As a result of this Q_2 conducts, while the transistor Q_1 is OFF. iv. Thus at any instant any one transistor in the circuit is conducting. Then the output transformer joins these two halves & produces a full sine wave in the load resistor. OR Circuit diagram:-Circuit operation:-Resistor R₁, R₂ are chosen to provide biasing to the transistors Q₁, Q₂, input transformer T₁ provides phase splitting function in which two voltages are out of phase with each other. V_{CC} is tied to the transistor collectors through the centre tapped output transformer T₂. R_e is stabilized resistor. When positive half cycle of the input signal is applied, the base of Q_1 becomes

- positive and base of Q₂ negative. Therefore Q₁ is ON and Q₂ is OFF. As transistors Q₁ and Q₂ are biased just above cut off. Therefore as positive input cross zero, collector current ic₁ starts flowing through Q₁, through transformer T₂ as shown and $ic_2 = 0$. A positive sinusoidal voltage will appear across load.
- When negative half cycle is applied across input the base of Q₁ becomes negative while the base of Q_2 is positive. Therefore Q_1 is off and Q_2 conduct, as soon as input cross zero, negative sinusoidal voltage will appear across load.

c)	With the help of neat circuit diagram, explain the operation of voltage shunt type feedback amplifier.	4M
Ans:	Diagram:	2M


			V _s V _b V _b	Rc Vo		
	between its signal is app (out of phase	outpu plied to e with he feed	toon emitter transistor amplifier value and input terminals. This is contour the input then amplified output input) with the input. Solution of the input input input input input input input. Solution of the input i	llector to base biasing when	the input	Explanation 2M
	Thus if we re therefore it is negative feed	reduce is volt edback	_	shunt type therefore it voltage		
d)	Thus if we re therefore it is negative feed.	reduce is volt edback etwee	age feedback. As $I_S = I_f + I_i$ it is amplifier. In RC phase shift oscillator and	shunt type therefore it voltage		4M
d) Ans:	Thus if we re therefore it is negative feed.	reduce is volt edback etwee	age feedback. As $I_S = I_f + I_i$ it is amplifier.	shunt type therefore it voltage		Any 4
ĺ	Thus if we retherefore it is negative feed. Compare be (Note: Any	reduce is volt edback etwee	age feedback. As $I_S = I_f + I_i$ it is amplifier. In RC phase shift oscillator and	shunt type therefore it voltage		Any 4 points 1M
ĺ	Thus if we retherefore it is negative feed. Compare be (Note: Any	reduce is volt edback etwee other Sr. No.	age feedback. As $I_S = I_f + I_i$ it is amplifier. In RC phase shift oscillator and relevant point also can be constituted.	shunt type therefore it voltage of the shunt type the shunt type the shunt type of the shunt		Any 4 points
ĺ	Thus if we retherefore it is negative feed. Compare be (Note: Any	reduce is volt edback etwee other Sr. No.	age feedback. As $I_S = I_f + I_i$ it is amplifier. In RC phase shift oscillator and relevant point also can be considered as the relevant point also can be considered. This oscillator is used for low	crystal oscillator. Crystal oscillator Quartz crystal is mainly used in radio-frequency		Any 4 points 1M
ĺ	Thus if we retherefore it is negative feed. Compare be (Note: Any	reduce is volt edback etwee other Sr. No.	age feedback. As $I_S = I_f + I_i$ it is amplifier. In RC phase shift oscillator and relevant point also can be considered as the relevant point as th	crystal oscillator. Crystal oscillator Quartz crystal is mainly used in radio-frequency (RF) oscillators Crystal decides the		Any 4 points 1M
ĺ	Thus if we retherefore it is negative feed. Compare be (Note: Any)	reduce is volt edback etwee other Sr. No.	age feedback. As $I_S = I_f + I_i$ it is amplifier. In RC phase shift oscillator and relevant point also can be considered as the relevant point as t	crystal oscillator. Crystal oscillator Quartz crystal is mainly used in radio-frequency (RF) oscillators Crystal decides the frequency of oscillator. crystal oscillators are		Any 4 points 1M
ĺ	Thus if we retherefore it is negative feed. Compare be (Note: Any)	reduce is volt edback etwee other Sr. No.	age feedback. As $I_S = I_f + I_i$ it is amplifier. In RC phase shift oscillator and relevant point also can be constituted as the constitute of the consti	Crystal oscillator Quartz crystal is mainly used in radio-frequency (RF) oscillators Crystal decides the frequency of oscillator. crystal oscillators are highly stable Crystal is connected in feedback.	ge shunt	Any 4 points 1M
Ans:	Thus if we retherefore it is negative feed. Compare be compare be compared to the compared to	reduce is volt edback etwee other Sr. No.	age feedback. As $I_S = I_f + I_i$ it is amplifier. In RC phase shift oscillator and relevant point also can be constituted as the constituted and relevant point also can be constituted as the constitut	Crystal oscillator Quartz crystal is mainly used in radio-frequency (RF) oscillators Crystal decides the frequency of oscillator. crystal oscillators are highly stable Crystal is connected in feedback.	ge shunt	Any 4 points 1M each poin

			Sr. No.	78xx	79xx		point	
			1	It produces positive fixed DC voltage values,	It produces negative fixed DC voltage values			
			2	IC 78xx (7805, 7806, 7808, 7812, 7815, 7818,7824)- Positive Voltage Regulator.	IC 79xx (7905, 7906,7908,7912, 7915) - Negative Voltage Regulator			
			3	Output current is 1A	Output current is 1.5A			
			4	1 IC 3 Input 78XX Output 2 Ground OR	2 IC 3 Input 79XX Output 1 Ground			
				1-Input	OR 1-Ground			
				2-Ground	2-Input			
				3-Output	3-Output			
Q.5		Attempt any TWO of the following						
	(a)		_	ration of double tuned amplif	ier with the help of neat circ	cuit	6M	
		diagram and mention its applications. Circuit diagram:					2M	
	Ans:	Circuit dia	ıgram:	+ Vcc			21 V1	
				R_1 C_1 C_1 C_1 C_2 C_3 C_4 C_4 C_4 C_4 C_4 C_5 C_5 C_6 C_6 C_6 C_6 C_6 C_6 C_6 C_6 C_7 C_8 C_8 C_8 C_8 C_8 C_8	C _E			
		 Operation: The signal to be amplified is applied at the input terminal through the coupling capacitor C_C The resonant frequency of the tuned circuit L₁ C₁ is made equal to that of tuned circuit L₂ C₂ 					2M	
		 circuit L₂ C₂ Under these conditions the tuned circuit offers avery high impedance to the input signal. As a result of this, a large output appears across the tuned circuit L₁C₁which is inductively coupled to the L₂C₂ tuned circuit. Applications:(any two) (i) Radio and T.V broadcasting as tuning circuit. 						

	(ii) Wireless communication system. Sketch the labeled diagram of class A and class B types of power amplifier. Also	
(b)		6M
Ans:	draw the input and output waveforms. State one application of each. CLASS A POWER AMPLIFIER CIRCUIT DIAGRAM:	Diagran
*****	φ+Vcc	Diagram
	R ₁ R ₂ R _E C _C C _{C1} C _{C1} C _{C1} C _{C1} C _{C2} C _{C3} C _{C4} Tyansformer Tyan	1 ½ M
	CLASS A POWER AMPLIFIER I/P &O/P WAVEFORMS:	
	Vin	
	Vo	Wavefo
		1M
	CLASS A POWER AMPLIFIER APPLICATION: 1. High gain voltage amplifiers 2. RF& IF amplifiers in Radio & T.V. 3. Audio amplifiers CLASS B POWER AMPLIFIER CIRCUITRAM:	
	Input Signal Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Diagrai 1 ½ M
	class B push pull power amplifiercomplementary symmetry class B push pull power	_ / 2 1 1 1
	amplifier	
	CLASS B POWER AMPLIFIER I/P & O/P WAVEFORMS:	
	Input voltage 0 Output voltage 0 0 0 0 0 0 0 0	Wavefo
	CLASS B POWER AMPLIFIER APPLICATION(Any 2):	

BOARD OF TECHNICAL EDUCATION

	<u> </u>		1
		2. In public address systems (PA system)3. In tape recorders and music system	
		4. In T.V receivers	
	(c)	Draw the neat labelled diagram of miller sweep generator and mention its two	6M
	<u> </u>	applications.	
	Ans:	Circuit Diagram:	4M
		R _{B2} + Vcc	
		Applications (Any Two):	1M each
		• In Television (TV)	
		• In CRO	
		To convert step waveform into ramp waveform.	100 4 1
Q.6		Attempt any TWO of the following:	12Total Marks
		For a BJT ac amplifier, with a midband voltage gain of 200, if the cutoff	Marks
	(a)	frequencies are f ₁ =20Hz and f ₂ =20KHz.Draw the frequency response for amplifier.	6M
		Draw the frequency response in case of mid gain of 100 and f_1 =500Hz to f_2 =5KHz.	OIVI
	Ans:		3M
		(i) Frequency response for amplifier with mid-band voltage gain of 200, if	
		the cutoff frequencies are f_1 =20Hz and f_2 = 20KHz.	
		Voltage gain A, 200 200 20 HZ 20 KHZ Frequency (ii) Frequency response for amplifier with mid-band voltage gain of 100, if	
		the cutoff frequencies are f_1 =500Hz and f_2 = 5KHz.	

